The Blind Leading the Blind: Who Gets Polling Information and Does it Improve Decisions?

Cheryl Boudreau University of California, Davis
Mathew D. McCubbins University of California, San Diego

We analyze whether and when polls help citizens to improve their decisions. Specifically, we use experiments to investigate (1) whether and when citizens are willing to obtain polls and (2) whether and when polls help citizens to make better choices than they would have made on their own. We find that citizens are more likely to obtain polls when the decisions they must make are difficult and when they are unsophisticated. Ironically, when the decisions are difficult, the pollees are also uninformed and, therefore, do not provide useful information. We also find that when polls indicate the welfare-improving choice, citizens are able to improve their decisions. However, when polls indicate a choice that will make citizens worse off, citizens make worse decisions than they would have made on their own. These results hold regardless of whether the majority in favor of one option over the other is small or large.

How do polls affect citizens’ decisions? Ever since polling proliferated in the early twentieth century, citizens in our country have been bombarded with facts and figures regarding what the “typical” American thinks, feels, and intends to do (Herbst 1993; Igo 2007). For example, when covering campaigns, the media frequently report poll results indicating the percentage of citizens who intend to vote for one candidate over the other, the percentage of citizens who think that a given candidate is qualified, and so on. When discussing policy proposals, the media often present polls showing the percentage of citizens who support or oppose the policy in question. Similarly, the media report the results of polls that reflect citizens’ beliefs about factual matters, such as whether Saddam Hussein had weapons of mass destruction or whether Barack Obama is a Muslim. Related polls are conducted in economic contexts, where businesses report poll results showing that a majority of consumers prefer their brand to their competitors’ brands.

Given the countless polls that are conducted and publicized in political and economic contexts, it is not surprising that scholars question whether and how polls influence citizens. Although some scholars suggest that polls provide uninformed citizens with cues that may aid them with their decisions (Bartels 1988; Mutz 1992; Popkin 1991), others argue that polls may have harmful effects because political elites and the media can manipulate them (Jacobs and Shapiro 1995–96; Lippman 1925; Polsby and Wildavsky 1980; West 1991). Such concerns about polls have been heightened in recent years because of the media’s tendency to make poll results appear overly precise and scientific when in fact many polls are plagued by inaccuracies and biases (Franklin 2003; Herbst 1993; Igo 2007; Jackman 2005; Lau 1994). These concerns, viewed in light of research showing that polls influence citizens’ beliefs and behaviors (e.g., Ansolabehere and Iyengar 1994; Hardy and Jamieson 2005; Mutz 1997), make it important to analyze (1) the conditions under which citizens seek out and use polls and (2) whether and when polls help citizens to make better decisions than they would have made on their own.

We analyze both of these questions by conducting laboratory experiments. Specifically, we randomly assign subjects to either a control group (where subjects make their decisions on their own) or to one of several different treatment groups (where subjects have the option to receive poll results before making their decisions).
Do Polls Help or Harm?

In response to scholars who lament citizens’ lack of factual knowledge about politics (Berelson, Lazarsfeld, and McPhee 1954; Campbell et al. 1960; Converse 1964), many scholars argue that cues can substitute for knowledge about politics and help citizens make informed choices (Boudreau 2009; Druckman 2001; Kam 2005; Lupia and McCubbins 1998; Popkin 1991; Sniderman, Brody, and Tetlock 1991). Although there are many cues that citizens can rely upon (party labels, endorsements, candidates’ appearances, etc.), scholars emphasize that polls are particularly salient cues for citizens and that they influence citizens’ decisions and perceptions (Bartels 1988; Ceci and Kain 1982; Irwin and Van Holsteyn 2002; Mutz 1992; Popkin 1991; see Geer 1996 for a discussion of how polls affect politicians). Indeed, given the dramatic increase in the number of polls reported in the media (Herbst 1993; Igo 2007; Lavrakas and Traugott 2000), it is not surprising that scholars emphasize the cue-taking aspects of public opinion poll reporting. Although these scholars suggest that polls can provide citizens with cues, many do not assess the conditions under which polls improve citizens’ decisions.

In contrast to those who suggest that polls provide citizens with helpful cues, several scholars argue that polls may have harmful effects. Specifically, scholars in this camp suggest that political elites and the media can manipulate polls, which may enable them to sway citizens’ preferences and voting decisions (Herbst 1993; Jacobs and Shapiro 1995–96; Lippman 1925; Polsby and Wildavsky 1980; West 1991). For example, Jacobs and Shapiro (1995–96) demonstrate that President Nixon tried to influence pollsters in order to misrepresent information about public opinion and enhance his own political power. Similarly, West (1991) emphasizes that if polls influence citizens’ choices, then this gives tremendous power to elites and the media who control the dissemination of poll results. Further, Herbst (1993) and Igo (2007) suggest that modern polls often appear more precise and authoritative than they actually are and that polls often supplant other types of information about public opinion (such as interviews with activists). Based upon related fears about the effects of polls, several countries have restricted the publication of opinion polls during campaigns (McAllister and Studlar 1991). Taken together, this research recognizes that polls may have detrimental effects and underscores the importance of identifying the conditions under which polls do (and do not) have such effects.

It is this body of research on the effects of polls that we build on in this study. Specifically, we use experiments to investigate the conditions under which citizens are willing to obtain polls. We also assess the conditions under which polls help citizens to make better decisions than they would have made on their own. Although there are many experimental and survey-based studies of polls, our experiments are unique in that they allow subjects to choose whether and when they would like to receive polls. This aspect of our experiments is advantageous because it allows us to observe directly (1) whether and when citizens are willing to bear the costs of obtaining polls (which often take the form of foregone opportunities to do something else) and (2) which types of citizens (i.e., unsophisticated versus sophisticated) are more likely to seek out and use polls. Further, in contrast to many survey-based studies of polls (where scholars often do not know whether individuals receive particular poll results and must deal with confounding events that occur during campaigns; see Hardy and Jamieson 2005), our experiments enable us to isolate the effects that polls alone have on citizens’ decisions and determine whether polls, by themselves, help citizens to make better decisions than they would have made on their own.
Research Design

In order to analyze the conditions under which polls help citizens to improve their decisions, we randomly assign subjects to either a control group or to one of several different treatment groups. We then ask subjects to answer a series of binary choice math problems (that is, subjects may choose whether answer “a” or answer “b” is correct). The math problems are drawn from an SAT math test and consist of many different types of problems and several levels of difficulty. We tell subjects in the treatment and control groups that they have 60 seconds to answer each math problem and that they will earn 50 cents for each problem that they answer correctly, lose 50 cents for each problem that they answer incorrectly, and neither earn nor lose 50 cents if they leave a problem blank. We ask subjects to make choices about math problems (instead of asking them to vote for fictional candidates or policies), in part, because this task provides us with a straightforward way of identifying correct decisions and assessing whether and when polls induce an improvement in decision making. Stated differently, although it is often difficult to identify when citizens choose the “correct” candidate or policy, it is easy to tell when they choose the correct answer to a math problem.

The difference between the treatment and control groups has to do with the conditions under which subjects answer the math problems. In the control group, subjects answer the math problems on their own, which provides a baseline for how well subjects make these decisions when they do not have access to polls. In the treatment groups, subjects also answer these math problems. However, before subjects in the treatment groups make their decisions, they can choose to receive the results of polls that we conducted prior to the experiment.

Specifically, before running our experiments, we polled 66 college undergraduates about what they thought the correct answers to the different math problems were. We told these undergraduates that they could either answer each problem or leave it blank. This aspect of our design makes our polls analogous to real-world polls in which “don’t know” is an option.

Then, if the undergraduates that we polled chose to answer a given problem, they could choose either answer “a” or answer “b.” These undergraduates had 60 seconds to make a decision about each math problem, and they earned 50 cents each time they chose the correct answer, lost 50 cents each time they chose the incorrect answer, and neither earned nor lost 50 cents each time they left a problem blank. We did not do this because we feared that giving treatment group subjects only 15 seconds to make their decisions would make them feel rushed or forced to rely upon the polls. Given these considerations, we purposely did not equate the groups with respect to the total amount of time they had to make their decisions.

6In each session of each treatment group, there are between 12 and 14 subjects in the laboratory. We are confident that subjects’ decisions to receive polls are not driven by stigmas or social desirability effects because we ensure that their decisions are completely anonymous.

5We tell subjects that the pollees had 60 seconds to make a decision about each math problem.

7Nontreatment group participants make one 60-second decision about the answer to each math problem. Equating the total amount of time that these groups have to make their decisions would have required us to do one of two things. First, we could have given nontreatment group participants a longer amount of time to answer each problem (i.e., 120 seconds). However, when pretesting these problems, we found that students tend not to use longer amounts of time. Thus, we are confident that our results would be the same if we had equated the groups by giving nontreatment group participants a full 120 seconds to make each decision. Second, we could have given treatment group subjects less time (after the initial 60 seconds) to make their final decision (i.e., 15 seconds). To equate the groups in this way, we could have given nontreatment group participants a total of 75 seconds to make their decisions. We did not do this because we feared that giving treatment group subjects only 15 seconds to make their final decisions would make them feel rushed or forced to rely upon the polls. Given these considerations, we purposely did not equate the groups with respect to the total amount of time they had to make their decisions.

2Subjects are given 60 seconds to make a decision about each math problem because our pretests showed that subjects tend not to use longer amounts of time.

3Lau and Redlawsk (1997) develop measures that assess the correctness of citizens’ votes.

4Allowing pollees to leave problems blank likely leads subjects to confer greater expertise on the majority—especially if they believe that the unknowledgeable pollees leave problems blank.
Although all subjects assigned to a treatment group have the option to receive the poll results, we manipulate whether subjects may receive the poll results for free or whether they must pay a small cost. We also manipulate whether the poll results are credible or not. This creates four different treatment groups in a 2×2 factorial research design: in one treatment group, subjects may receive poll results that they know to be credible for free. In the second treatment group, subjects may receive poll results that they do not know to be credible for free. In the third treatment group, subjects must pay a small cost if they would like to receive poll results that they know to be credible. In the fourth treatment group, subjects must pay a small cost if they would like to receive poll results that they do not know to be credible. We use a between-group research design in which separate groups of subjects are assigned to each of these treatment groups and to the control group. Each treatment group is described below.

Treatment 1: Free Access to Credible Polls

In this treatment group, subjects can receive the polls for free. That is, all they need to do to receive the polls is put a checkmark beside the line that asks whether they would like to receive information about what 66 other undergraduates recommend as the correct answer. Once subjects mark that they would like to receive this information, the experimenter provides it to them. This aspect of this treatment group is analogous to when citizens in the real world receive polls as a by-product of other activities and, therefore, do not pay any opportunity costs. For example, citizens surfing the Internet may see poll results in the margins of the web page that they are reading or during the commercial break of the TV show that they are watching.

Further, subjects in this treatment group know that the poll results are credible. That is, subjects are told that the 66 undergraduates that we polled earned 50 cents every time they recommended the correct answer, lost 50 cents every time they recommended the incorrect answer, and earned nothing if they chose not to answer the problem. Thus, subjects know that the pollees had an incentive to answer the questions truthfully and have little reason to fear that the pollees’ responses were not truthful. This aspect of this treatment group is analogous to the many real-world contexts in which citizens have little or no reason to fear that the pollees’ responses were not truthful. For example, real-world polls showing that a majority of pollees support clean energy policies or that a majority of pollees oppose raising property taxes are polls that typically do not cause citizens to fear that the pollees’ responses are untruthful. Although citizens may not base their decisions upon these polls for other reasons (namely, they may fear that the pollees are not knowledgeable about clean energy or property tax policies), there is little reason for them to question whether the pollees had an incentive to be truthful. And, just as citizens in the real world may fear that pollees lack knowledge about particular issues, so too may subjects in our experiments fear that the pollees lack knowledge about the correct answers to particular math problems. Thus, with this treatment group, we are able to assess the effects that polls have on citizens when they can receive them without paying a cost and when the pollees are credible, but not necessarily knowledgeable.

Treatment 2: Free Access to Noncredible Polls

In this treatment group, subjects can also receive the polls for free. However, because citizens in the real world do not always know whether pollees are credible, we do not tell subjects in this treatment group anything about the pollees’ incentives. Specifically, we tell these subjects that, prior to the experiment, we asked 66 undergraduates about what they thought the correct answers to the math problems were, and we do not tell these subjects anything about how these undergraduates earned money. Thus, although the undergraduates that we polled actually had an incentive to recommend correct answers (as described above), subjects did not know this.

8A between-group research design enables us to use the same math problems in each group. That said, in some sessions of the experiment, treatment group subjects answered 18 math problems, while in other sessions, treatment group subjects answered only 10 or 11 of these problems. Thus, we control for the difficulty of the problems in our statistical analyses.

9If the pollees had both an incentive to recommend correct answers and the expertise needed to recommend correct answers, we would expect subjects to rely even more heavily on the polls.

10To prevent subjects from assuming that the 66 undergraduates that we polled were paid for recommending correct answers, we use two procedures. First, at the beginning of the experiment, we ask subjects to solve four math problems on their own. For two of these math problems, we tell subjects that they will earn money for choosing incorrect answers. Thus, we show subjects that the 66 undergraduates did not necessarily earn money for recommending correct answers. Second, we give subjects a quiz on the experimental instructions, and one quiz question asks subjects about how the 66 undergraduates earned money. The correct answer to this quiz question is “unknown,” and subjects, by and large, answer this quiz question correctly.
This aspect of this treatment group is analogous to the many real-world contexts in which citizens may question whether pollees truthfully responded to the questions they were asked. For example, before the 2008 presidential election, many citizens and pundits questioned whether pollees truthfully revealed that they were going to vote for Barack Obama on Election Day or whether the poll results were driven by the Bradley Effect. Similarly, pollsters and others often question whether pollees truthfully report that they turned out to vote in particular elections. In contexts such as these, citizens who receive poll results may question whether the pollees’ responses are truthful. Similarly, subjects in this treatment group may question whether the pollees’ responses to the math problems were truthful. Thus, with this treatment group, we are able to assess the effects that polls have on citizens when they can receive them without paying a cost, but when they may reasonably question whether the pollees had an incentive to respond truthfully.11

Treatment 3: Costly Access to Credible Polls

In this treatment group, subjects must pay a small cost to receive the polls. Specifically, subjects must pay 10 cents each time they wish to receive information about what 66 other undergraduates recommend as the correct answer.12 This 10-cent cost is designed to be analogous to the opportunity costs that citizens in the real world may face when they seek out poll results.13 As in the “Free Access to Credible Polls” treatment group, subjects know that the pollees had an incentive to recommend correct choices. That is, subjects are told that the 66 undergraduates that we polled earned 50 cents every time they recommended the correct answer, lost 50 cents every time they recommended the incorrect answer, and earned nothing if they chose not to answer the problem. As before, what subjects do not know is whether the pollees were capable of solving the math problems correctly. Thus, with this treatment group, we are able to assess the effects that polls have on citizens when they must pay a small cost to receive polls that they know to be credible, but that are not necessarily knowledgeable.

Treatment 4: Costly Access to Noncredible Polls

In this treatment group, subjects must also pay 10 cents each time they wish to receive the poll results. However, as in the “Free Access to Noncredible Polls” treatment group, we do not tell subjects in this treatment group anything about the pollees’ incentives. That is, we tell these subjects that, prior to the experiment, we asked 66 undergraduates about what they thought the correct answers to the math problems were, and we do not tell these subjects anything about how these undergraduates earned money. Thus, with this treatment group, we are able to assess the effects that polls have on citizens when they must pay a small cost to receive the polls and when they may reasonably question whether the pollees had an incentive to respond truthfully.

Natural Variations: Problem Difficulty and Subject Sophistication

Because the math problems that we use vary in how difficult they are, subjects in our treatment groups receive dramatically different poll results for each math problem. That is, the size and direction of the majority recommending one option over the other naturally varies for each problem, depending upon the difficulty of the problem. Specifically, on the easy math problems, a large majority of the undergraduates that we polled recommended the correct answer. For example, on one of the easiest math problems, 59 pollees recommended the correct answer, three pollees recommended the incorrect answer, and four pollees chose not to answer the problem. However, on one of the most difficult math problems, a very large majority of undergraduates recommended the incorrect answer. For still other problems, there was not a large majority in favor of either option; that is, these poll results are closer to a 50-50 split.

11For a study showing that the absence of financial incentives can make citizens less likely to provide correct political information, see Prior and Lupia (2008).

12Subjects know the 10-cent cost is subtracted from their earnings at the end of the experiment.

13This 10-cent cost most likely underestimates the opportunity costs that citizens face in the real world. We designed our experiments in this way because if citizens are unwilling to receive polls with only a 10-cent cost—which is a small cost, relative to the potential benefit (50 cents) of making a correct choice—then it is unlikely that they will do so in the real world, when they may spend time, energy, and attention that is more costly to them, relative to what they might gain. Further, given that subjects’ expected payoff from guessing about the correct answer to a math problem is zero (50% x $0.50 + 50% x -$0.50 = 0), subjects only need to believe that a poll will increase their probability of answering the problem correctly by 11% (i.e., from 50% to 61%) for them to rationally pay 10 cents to receive it (61% x $0.50 + 39% x -$0.50 = $0.11).
These different distributions of opinion for each math problem enable us to assess the effects that the size and direction of the majority have on subjects’ decisions. Indeed, this natural variation in the math problems allows us to analyze not only whether subjects in our treatment groups base their choices upon what the majority of the pollees recommends, but also how large this majority has to be before subjects are willing to follow it. And, because the poll results for each math problem reflect how difficult each problem is (i.e., problems with more pollees recommending the correct answer are easier problems than those with fewer pollees recommending the correct answer), we are also able to assess whether subjects are more or less likely to receive poll results when the decisions they must make are difficult versus easy.

Another natural variation that we take advantage of is subjects’ varying levels of sophistication. Because we recruited a broad range of subjects and randomly assigned them to a treatment or control group, we have a mix of sophisticated and unsophisticated subjects in each treatment group and in the control group. Further, because we collect subjects’ SAT math scores prior to the experiment, we have a valid and reliable measure of how sophisticated subjects are at answering math problems. In this way, we are able to examine whether unsophisticated subjects are more or less likely than sophisticated subjects to obtain polls.

This measure of subjects’ sophistication is another important advantage associated with asking subjects to make decisions about math problems. Indeed, although an agreed upon measure of political sophistication does not exist (see, e.g., Luskin 1987), there does exist an agreed upon, widely used, and straightforward measure of mathematical sophistication. Further, subjects’ SAT math scores provide us with a measure of sophistication that is directly related to the task that subjects perform in our experiment (i.e., solving math problems). This also represents an improvement upon existing research because scholars often use a measure of sophistication that is not directly related to the task they seek to study. Specifically, scholars frequently measure political sophistication as the ability to answer factual questions about politics (see, e.g., Delli Carpini and Keeter 1996). Measures of this nature, however, may not have a strong relationship to the tasks that subjects perform in an experiment (for example, voting in a mock election, expressing an attitude about a particular policy, etc.) or to the tasks that citizens perform in the real world (i.e., voting for particular candidates or policies). By using SAT math scores as our measure of sophistication, we are able to use a measure of sophistication that directly relates to the task that subjects perform in our experiment.

External Validity: Connecting Math Problems to Politics

Even though math problems do not look like political decisions on the surface, they capture many key characteristics of political decisions. Thus, they can tell us a great deal about how citizens in the real world make political choices. At the most basic level, citizens making political decisions often choose between two options (e.g., voting “yes” or “no” on an initiative, voting for the incumbent or the challenger) that will have different effects on their welfare in the future (Fowler and Kam 2006). Similarly, our subjects must choose between two options (“a” or “b”) that also have different effects on their future welfare. Indeed, because subjects in our experiments (1) earn money for correct choices and lose money for incorrect choices, (2) are not paid for their decisions until the end of the experiment, and (3) are not given feedback about their decisions until the end of the experiment, the choices they make affect their future welfare.

Although most political decisions affect citizens’ welfare (and, thus, there is something at stake when citizens make political decisions), the stakes are often perceived to be small. Indeed, although some citizens perceive the stakes to be large when making decisions about hot-button political issues (such as abortion), research suggests that typical political issues are low
stake or oppose the war in Iraq), and we recognize
are subjective (i.e., should abortion be legal, do you
particular answer, and they must then make decisions
subjects in our experiments receive polls showing
that a majority of undergraduates recommend a
citizens support a particular candidate, and they must
citizens may receive polls showing that a majority of
which option will make them better off. For example,
themselves better off. This is especially true when party labels are not attached to the options from which voters must choose, as in the case in nonpartisan elections, ballots containing initiatives, etc. Similarly, subjects in our experiments may be uncertain about whether choosing “a” or “b” will make them better off. As in the real world, the uncertainty that subjects experience depends, in part, upon their levels of sophistication. Indeed, just as unsophisticated citizens in the real world may be more uncertain about which choice will make them better off, so too may unsophisticated subjects in our experiments be more uncertain about whether “a” or “b” is the best choice. And, just as citizens in the real world vary in their levels of sophistication, so too do our subjects, as their SAT math scores range from 400 (the 14th percentile) to 800 (a perfect score).

Further, citizens in the real world often receive poll results, and they must then make decisions about which option will make them better off. For example, citizens may receive polls showing that a majority of citizens support a particular candidate, and they must then decide whether they should choose that candidate when they go to the ballot box. Similarly, subjects in our experiments receive polls showing that a majority of undergraduates recommend a particular answer, and they must then make decisions about whether they should choose “a” or “b.” Admittedly, the questions on many political polls are subjective (i.e., should abortion be legal, do you support or oppose the war in Iraq), and we recognize
that there are differences between this type of poll and the polls used in our experiments. That said, there are many political polls that ask objectively correct or incorrect questions. For example, a 2003 Washington Post poll asked citizens the following questions: “How likely is it that Saddam Hussein was personally involved in the September 11 terrorist attacks?” and “How likely is it that Saddam Hussein had already developed weapons of mass destruction?” In contrast to more subjective opinion polls, this type of poll contains questions about information that is objectively correct or incorrect. The polls in our experiments are designed to be analogous to these more objective polls; thus, they tell us a great deal about the effects that this type of poll has on citizens’ decisions.

Finally, some types of political decisions either implicitly or explicitly involve solving math problems. For example, ballot initiatives regarding school funding policies, property tax policies, and other economic policies often involve math problems that citizens must solve to determine if particular policies benefit them and what the net impact of these policies is. Similarly, evaluating politicians’ statements about the consequences of social security privatization involves calculations about whether and when private accounts will yield a higher rate of return than the current system. In the real world (as in our experiments), these decisions can be difficult not only because the problem is complex, but also because poll results may not indicate the “correct” or welfare-improving solution. Given the many similarities between real-world political decisions and decisions about math problems, there is a close mapping between the psychological processes of subjects in our experiments and the psychological processes of voters in real-world contexts (Aronson, Wilson, and Brewer 1998).

Hypotheses

The experiments described above yield a number of predictions about the conditions under which subjects should be more (or less) likely to choose to receive polls. Specifically, we expect subjects to be more likely to receive polls when they can receive them for free, as opposed to when they must pay a cost, all else constant. Thus, subjects should be more likely to receive polls when they are free and credible than when they are costly and credible. Subjects should also be more likely to receive polls when they are free and noncredible than when they are costly
and noncredible. We also predict that subjects will be more likely to receive polls when they know the polls are credible, as opposed to noncredible, all else constant. Thus, subjects should be more likely to receive polls when they are free and credible than when they are free and noncredible. Subjects should also be more likely to receive polls when they are costly and credible than when they are costly and noncredible. Further, we expect subjects to be more likely to receive polls when they are unsophisticated (as opposed to sophisticated) and when the problems are difficult (as opposed to easy).

The logic behind each of these predictions is straightforward. When receiving polls is costly, the cost of the polls may exceed their value for some subjects. This is not the case when subjects can receive polls for free. Further, when subjects know that the polls are credible, the perceived quality of that information is higher than when the polls are not known to be credible. Thus, all else constant, subjects should be more likely to receive credible polls than noncredible polls. Additionally, unsophisticated subjects (who typically lack the ability to make correct decisions on their own) are more likely to need the information that polls provide, and subjects, in the aggregate, are more likely to need polling information when the decisions are more difficult. Stated differently, subjects who can make correct decisions on their own (either because they are sophisticated or because the problem is easy) should be less likely to receive polls, all else constant.

As for how polls should affect the quality of subjects’ decisions once they choose to receive them, this depends upon subjects’ beliefs about the sophistication levels of the 66 undergraduates that we polled, relative to their self-evaluations of their own levels of sophistication. For example, if a subject believes that the 66 undergraduates that we polled are more sophisticated than he or she is, then that subject should base his or her decision on what the majority of pollees recommends, especially if the poll is known to be credible. If a subject believes that the 66 pollees are less sophisticated than he or she is, then that subject should ignore the poll results if the majority recommends an answer that differs from his or her own perceptions of the correct answer. Because subjects are not told whether the undergraduates that we polled are knowledgeable about solving math problems, we must simply observe ex post the quality of their decisions in each treatment group, with correct versus incorrect poll results, and with different margins between the number of pollees recommending one answer over the other.

Data and Methodology

To test our hypotheses, we conducted laboratory experiments at a large public university. When recruiting subjects, we posted flyers on campus and sent out campus-wide emails to advertise the experiments. A total of 236 adults who were enrolled in undergraduate classes participated. Of these 236 subjects, 42 were randomly assigned to the “Free Access to Credible Polls” treatment group, 49 were assigned to the “Free Access to Noncredible Polls” group, 37 were assigned to the “Costly Access to Credible Polls” group, 42 were assigned to the “Costly Access to Noncredible Polls” group, and 66 were assigned to the control group.

When analyzing the data gleaned from these experiments, we first assess whether and when subjects choose to receive polls. Specifically, we estimate the following model:

\[\text{ReceivePoll} = \alpha + \beta \text{Treatment1} + \beta \text{Treatment2} \\
+ \beta \text{Treatment3} + \beta \text{Sophistication} \\
+ \beta \text{Difficulty} + \beta \text{SchoolYear} \\
+ \beta \text{Female} + \epsilon \]

In this model, \(\text{ReceivePoll} \) is a dummy variable that reflects whether a subject chooses to receive a poll on each problem (coded 1 if a subject chooses to receive a poll and 0 otherwise). The \(\text{Treatment1} \) variable reflects participation in Treatment group 1 (i.e., where polls are available, free, and credible) and is coded 1 if a subject is in Treatment group 1 and 0 otherwise. The \(\text{Treatment2} \) variable reflects participation in Treatment group 2 (i.e., where polls are available, free, and not credible) and is coded 1 if a subject is in Treatment group 2 and 0 otherwise. The \(\text{Treatment3} \) variable reflects participation in Treatment group 3 (i.e., where polls are available, costly, and credible) and is coded 1 if a subject is in Treatment group 3 and 0 otherwise. The \(\text{Sophistication} \) variable reflects subjects’ SAT math scores, and the \(\text{Difficulty} \) variable indicates the level of difficulty of each math problem (higher values of this variable reflect a harder problem). The variables \(\text{SchoolYear} \) and \(\text{Female} \) indicate subjects’ year in school and gender, respectively. Treatment group 4 (where polls are available, costly, and not credible) is the omitted category in this regression.

We estimate the above model using a logistic regression and a random effects logistic regression. We include a random effects model to capture

\[15 \text{We control for these subject characteristics because there were small differences in them across our treatment groups.} \]
unobserved individual (i.e., subject) heterogeneity and to demonstrate that our results do not change when such unobserved individual heterogeneity is modeled. Substantively, this analysis enables us to assess whether subjects are more likely to receive polls when the decisions they must make are difficult and when they are more (or less) sophisticated. It also allows us to analyze whether subjects are more (or less) likely to receive polls in particular treatment groups.

Second, we assess whether and when polls help subjects to improve their decisions and, by extension, their welfare. Because subjects earn money for each correct decision, lose money for each incorrect decision, and neither earn nor lose money for each blank answer, we use the amount of money that each subject earns on each problem as a measure of the quality of subjects' decisions. Specifically, we estimate the following model:

\[
MoneyEarned = \alpha + \beta_{Treatment1} + \beta_{Treatment2} + \beta_{Treatment3} + \beta_{Treatment4} + \beta_{Sophistication} + \beta_{Difficulty} + \beta_{ReceivePoll}^*Treatment1 + \beta_{ReceivePoll}^*Treatment2 + \beta_{ReceivePoll}^*Treatment3 + \beta_{ReceivePoll}^*Treatment4 + \beta_{ReceivePoll}^*Sophistication + \beta_{ReceivePoll}^*Difficulty + \beta_{ReceivePoll}^*MajorityIncorrect + \beta_{ReceivePoll}^*MajorityIncorrect + \beta_{SchoolYear} + \beta_{Female} + \epsilon
\]

In this model, MoneyEarned is a variable that reflects the amount of money that a subject earns on each problem (coded $0.50 if a subject answers correctly, $-0.50 if a subject answers incorrectly, and $0 if a subject leaves the problem blank). Thus, our unit of analysis is subject–problem observations. The Treatment1, Treatment2, Treatment3, Treatment4, Sophistication, and Difficulty variables are coded as described above. We also interact each of these variables with a ReceivePoll dummy variable (coded 1 if a subject chooses to receive a poll and 0 otherwise). We also include an interaction between ReceivePoll and a MajorityIncorrect dummy variable (coded 1 if a majority of pollees recommend the incorrect answer and 0 otherwise), as well as an interaction between ReceivePoll and a MajorityMargin variable (which reflects the absolute value of the difference between the number of pollees choosing “a” versus “b”). As in the previous model, we control for subjects' year in school and gender. The omitted category in this model is the control group.

The main variables of interest in this analysis are the interaction terms because they capture the effects of receiving polls under different conditions. Specifically, significant positive coefficients for the interactions between ReceivePoll and each treatment dummy variable would indicate that receiving polls improves subjects’ decisions within a given treatment group. A significant negative coefficient for the interaction between ReceivePoll and MajorityIncorrect would indicate that receiving incorrect poll results induces subjects to make worse decisions. A significant positive coefficient for the interaction between ReceivePoll and MajorityMargin would indicate that the larger the majority picking one option (in this case, the correct option) over the other, the better decisions subjects make. We estimate this model using both ordinary least squares (OLS) and random effects generalized least squares (GLS) regressions to ensure that our results are robust to unobserved individual heterogeneity.
Results: The Blind Lead the Blind

Our results show that subjects are more likely to receive polls when the polls are least likely to help them. Specifically, Table 1 demonstrates that subjects are more likely to receive polls when the decisions that they must make are more difficult. Indeed, as shown in Table 2, moving from the easiest problem in the experiment (which 89% of the pollees answered correctly) to the hardest problem (which only 6% of the pollees answered correctly) increases the chance that subjects choose to receive a poll by approximately 16%. Although this result is not surprising (indeed, we did not expect subjects to choose to receive polls when the decisions that they must make are easy), it is quite ironic because the hardest problems in the experiment are the ones where the pollees are less likely to recommend the correct answer. Thus, subjects are more likely to choose to receive polls in situations where their fellow undergraduates are also uninformed about the correct choice.

As expected, we also find that unsophisticated subjects are more likely to choose to receive polls than are sophisticated subjects. Specifically, Table 2 shows that moving from the most sophisticated subject (who scored an 800 on his or her SAT math test) to the least sophisticated subject (who scored a 400 on his or her SAT math test) increases the chance that subjects will receive a poll by 29%. Although it is also not surprising that the least sophisticated are more likely to choose to receive polls, these results demonstrate that the blind lead the blind in our experiments. Indeed, these results indicate that subjects who lack the sophistication to judge whether the polls are correct are the ones who are more likely to receive them, even when their fellow undergraduates are unlikely to know any more than they do.

Contrary to our expectations, the results in Tables 1 and 2 also demonstrate that subjects are equally likely to receive polls when the poll results are credible versus noncredible. That is, although subjects are significantly more likely to choose to receive polls when it is free to receive them (compared to when they must pay a cost), there is not a significant difference in the probability that subjects choose to receive polls when (1) the poll results are free and credible versus free and noncredible and (2) the poll results are costly and credible versus costly and noncredible. Stated differently, regardless of whether polls are free or costly, subjects are just as likely to choose to receive polls when they know that the pollees had a financial incentive to recommend correct choices versus when they do not know anything about the pollees’ incentives. Thus, not only do the “blind” pollees lead the “blind” subjects, but subjects also do not appear to distinguish between credible and noncredible polls.

Consequences of Receiving Polls

Our results also demonstrate that polls do not necessarily help subjects to improve their decisions. Specifically, when we compare subjects in the control group to subjects who receive the polls in each treatment group, we do not observe any significant differences in the amounts of money that subjects earn. Indeed, Tables 3 and 4 show that subjects who receive the polls in each treatment group do no better than subjects in the control group, who make their decisions on their own. This finding stems, in part, from the fact that treatment group subjects who receive the polls do not appear to distinguish between correct and incorrect poll results, nor do they take into account the size of the majority recommending one answer over the other. That is, the direction of the majority (regardless of whether it is correct or incorrect) exerts an enormous influence on subjects’ decisions, while the size of the majority does not.

The results in Table 4 illustrate the power that the direction (but not the size) of the majority has on subjects’ decisions. Specifically, we find that when a majority of the pollees recommended the correct answer, subjects who receive polls earn significantly more money than subjects in the control group. However, when a majority of the pollees recommended the incorrect answer, subjects who receive polls earn significantly less money than subjects in the control group. Indeed, when the direction of the majority changes from recommending the correct answer to recommending the incorrect answer, subjects who receive the polls lose an estimated 43 cents per problem. Interestingly, Table 4 also demonstrates that the size of the majority recommending one answer over the other does not influence subjects’ decisions. That is, moving from the smallest majority margin (where six pollees recommended one answer and five recommended

20Using Treatment 4 as the omitted category does not affect the size or significance of the effects that Difficulty and Sophistication have on the probability that subjects receive polls.
the other answer, yielding a margin of 1) to the largest majority margin (where 59 pollees recommended one answer and three recommended the other answer, yielding a margin of 56) does not produce a significant difference in the amounts of money that subjects earn. This result holds regardless of whether the majority recommends the correct or incorrect answer and even when controlling for the difficulty of the problems. Thus, even though the size of the majority may not be very large and even though a bare majority may recommend the incorrect answer, the direction of the majority exerts a significant influence on subjects’ decisions.

Because subjects’ decisions to receive polls are not random (the results in Tables 1 and 2 show that they are not), we also conducted experiments in which all subjects were automatically given free and credible polls (as opposed to having to request them). We then compared the results of these experiments with the results from our “Free Access to Credible Polls” treatment group (where subjects choose whether to receive free and credible polls).21 This comparison allows us to determine whether polls

21In an ideal world, we could include several different treatment groups in which subjects are forced to view polls. For example, ideally, we could force subjects to pay a cost to receive polls that are either credible or not and force them to receive free polls that are either credible or not. This would create four different treatment groups where subjects are forced to receive polls that correspond to our four different selection treatment groups. However, our Institutional Review Boards would not allow us to force subjects to pay to receive polls (whether credible or not) because it is unethical to force subjects to give up money in an experiment. Because we cannot force subjects to pay to receive polls (and because we observed no differences between free, credible polls and free, noncredible polls), we include one treatment group where subjects are forced to receive free, credible polls. We find no differences in the effects of MajorityIncorrect and MajorityMargin on subjects that are forced to receive free, free polls and subjects that choose to receive free, free polls. These results give us confidence that our results are not biased by selection effects (Gaines and Kuklinski 2008, 2009). That said, we recognize that the results in the text show the effect of the treatments on subjects who self-select into them, not the effect of the treatments if all subjects were treated. However, given that citizens choose whether to receive information (such as polls) in the real world, we argue that our selection treatment groups bolster the external validity of our experiments (Gaines and Kuklinski 2008, 2009).
have the same effect on subjects’ decisions when subjects choose to receive them versus when they are forced to receive them (see Gaines and Kuklinski 2008, 2009 for further discussion of the advantages of this technique). Our results indicate that regardless of whether subjects choose to receive these polls or whether they are automatically given the polls, the effects that these polls have on their decisions are the same. That is, in both experiments, the direction of the majority exerts a large influence on subjects’ decisions, while the size of the majority does not. Thus, even when subjects are automatically given polls, they earn significantly less money when a majority of pollees recommends the incorrect decision, regardless of the size of that majority. (See the online appendix for these results. 22)

Conclusion

The results of our experiments demonstrate that when it comes to polls, “the blind lead the blind.” That is, subjects are more likely to obtain polls when the decisions that they must make are difficult and when they are unsophisticated. Although this result makes a great deal of sense (i.e., we expect subjects to seek information when they are not sure of what choice to make), it is problematic because on the difficult decisions, the pollees are also uninformed and do not provide much useful information. Thus, we observe the blind pollees leading the blind subjects. Further, subjects do not appear to distinguish between credible versus noncredible polls.

Our results also show that polls do not necessarily help subjects to improve their decisions. Specifically, we find that although subjects base their decisions upon the recommendations of the majority, they do not distinguish between correct and incorrect poll results, nor do they take into account the size of the majority recommending one answer over the other. That is, the direction of the majority (regardless of whether it is correct) exerts an enormous influence on subjects’ decisions, while the size of the majority does not. What this means for subjects’ decisions is that when a majority of pollees recommends the correct answer, subjects who receive the polls make significantly better decisions than subjects in the control group, who make their decisions on their own. However, when a majority of pollees recommends the incorrect answer, subjects who receive the polls make significantly worse decisions than subjects in the control group. These effects occur regardless of the size of the majority recommending one answer over the other. Thus, the majority’s opinions about the correct choices can cause subjects to make incorrect decisions, even when the majority is not very large. The consequence of these findings is that subjects who receive the polls in each treatment group make decisions that are no better than the decisions of control group subjects.

Table 2

<table>
<thead>
<tr>
<th>When this variable...</th>
<th>Shifts from...</th>
<th>Change in Probability of Receiving Poll (confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>0 to 1</td>
<td>0.64 (0.587, 0.680)</td>
</tr>
<tr>
<td></td>
<td>(i.e., from “Costly Access to Noncredible Polls” to “Free Access to Credible Polls”)</td>
<td></td>
</tr>
<tr>
<td>Treatment 2</td>
<td>0 to 1</td>
<td>0.68 (0.627, 0.726)</td>
</tr>
<tr>
<td></td>
<td>(i.e., from “Costly Access to Noncredible Polls” to “Free Access to Noncredible Polls”)</td>
<td></td>
</tr>
<tr>
<td>Treatment 3</td>
<td>0 to 1</td>
<td>0.04 (−0.012, 0.087)</td>
</tr>
<tr>
<td></td>
<td>(i.e., from “Costly Access to Noncredible Polls” to “Costly Access to Credible Polls”)</td>
<td></td>
</tr>
<tr>
<td>Difficulty</td>
<td>Easiest to Hardest</td>
<td>0.16 (0.122, 0.208)</td>
</tr>
<tr>
<td>Sophistication</td>
<td>800 to 400</td>
<td>0.29 (0.192, 0.404)</td>
</tr>
</tbody>
</table>

Effects indicate first differences with all treatment variables set to zero and all other variables held constant at their median values. Boldface indicates that the 95% confidence interval around a simulated first difference did not contain zero, signifying statistical significance. Based on the Logit model presented in Table 1, with first differences drawn from 1000 simulations performed by CLARIFY (Tomz, Wittenberg, and King 2001).

The online appendix can be found at http://ps.ucdavis.edu/People/faculty/clboudre/.

22The online appendix can be found at http://ps.ucdavis.edu/People/faculty/clboudre/.
Because polls are increasingly conducted by politicians and reported in the media (and because poll results are not always correct), our results contribute to the literature on polls, in particular, and to the literature on cue taking, in general.

Although many scholars suggest that cues improve citizens’ decisions, our results reveal that the effectiveness of this particular cue depends upon the nature of the poll results. That is, although polls are clearly a powerful cue for citizens,23 they only help citizens to improve their decisions when a majority of pollees is in favor of the welfare-improving choice. And, because our results suggest that citizens are more likely to obtain polls when the poll results are least likely to help them (i.e., when the decisions are difficult and when they are unsophisticated), it cannot be said that polls necessarily provide citizens with cues that help them with their decisions. Indeed, what this result suggests for real-world politics is that when unsophisticated citizens receive polls about what their fellow citizens think about complex, difficult issues (such as how to properly dispose of nuclear waste or what the consequences of social security privatization would be), they are unlikely to benefit from such poll results. Rather, their fellow citizens are likely to be just as uninformed about these issues as they are, which may lead citizens to make worse decisions than they would have made on their own. However, when citizens receive polls about what their fellow citizens think about simpler issues, they are more likely to receive poll results that help them with their decisions. The irony is that when the issues are simple, citizens are unlikely to need polls in the first place.

Viewed in light of the media’s (over)emphasis on the precision of polls, as well as the problems associated with telephone and Internet polls, our results suggest that we may have good reason to fear that “the blind lead the blind” in real-world politics. Consistent with our experimental results, survey-based and historical research demonstrates that citizens in real-world political settings put a tremendous amount of stock in what “the majority” thinks, feels, and intends to do (Herbst 1993; Igo 2007). The stock that ordinary citizens put in polls is disconcerting because scholars have shown that real-world polls can be inaccurate and biased (see, e.g., Franklin 2003; Jackman 2005; Lau 1994). Thus, citizens in real-world politics (like subjects in our experiments) may receive poll results that are inaccurate, yet may

23In contrast to Surowiecki (2004), we focus on contexts in which the majority is wrong, which leads citizens to make worse decisions than they would have made on their own. Of course, Surowiecki also considers instances in which the majority is wrong, and he emphasizes that the sharing of information among group members is crucial for good decision making. However, in our experiments, the pollees could not share information prior to recommending answers.
be swayed by these seemingly precise and scientific results.

From a methodological standpoint, our results suggest that scholars should continue to use both experimental and survey-based methods to investigate the effects that polls have on citizens’ decisions. In this study, we took advantage of the strong internal validity associated with laboratory experiments and analyzed (1) the conditions under which citizens are willing to obtain polls and (2) whether and when polls help citizens to improve their decisions. However, because we examined the effects of one particular type of poll (i.e., polls about objectively correct or incorrect information), our results may overestimate the extent to which citizens in the real world base their decisions upon the recommendations of the majority. Indeed, Griskevičius et al. (2006) demonstrate that when an issue has an objectively correct answer, people are more likely to follow the majority out of fear of being proven wrong. Although many political polls contain information that is objectively correct or incorrect (i.e., whether Saddam Hussein was personally involved in the September 11 terrorist attacks), other political polls contain more subjective questions (i.e., whether respondents support or oppose the war in Iraq). Thus, scholars should be careful when generalizing our results to more subjective polling contexts. That said, given the many polls that do tap pollees’ beliefs about objective, factual information, our experiments tell us a great deal about how citizens in the real world use this type of poll.

Acknowledgments

We thank the National Science Foundation (Grant #SES-0616904) and the Kavli Institute for Brain and Mind for providing financial support for these experiments. We also thank Craig Burnett and Vladimir Kogan for excellent research assistance. We are grateful to Gary Cox, Bob Huckfeldt, Cindy Kam, Skip Lupia, Scott MacKenzie, Sam Popkin, and members of the micropolitics group at the University of California, Davis for helpful comments on this project.

Manuscript submitted 5 February 2008
Manuscript accepted for publication 16 September 2009

References

Cheryl Boudreau is assistant professor of political science at the University of California, Davis, Davis, CA, 95616.

Mathew D. McCubbins is Distinguished Professor and Chancellor’s Associates Chair of political science at the University of California, San Diego, San Diego, CA 92093.